рекомендации

среда, 13 января 2010 г.

Атомные пули из калифорния



В древних китайских летописях сохранилась запись о чудесной необычайно яркой звезде, неожиданно возникшей на небосводе, которая затем постепенно угасала, и через два года от нее не осталось следа... Современные астрономы считают, что их давним предшественникам посчастливилось наблюдать редчайшее событие – рождение сверхновой звезды (supernovae, как ее нынче именуют в звездных каталогах). В нашей галактике сверхновая вспыхивает примерно раз в несколько столетий. Астрономов XX в. выручают мощные телескопы, с их помощью ученые наблюдают рождение ярких звезд на расстоянии в сотни световых лет, в отдаленных мирах.
Из анализа летописей и современных наблюдений получалось, что сравнительно медленное убывание блеска сверхновой можно объяснить только энергией какого-то радиоактивного изотопа с периодом полураспада, близким к постоянной времени ее затухания.
Долгое время не находили подходящего изотопа. Наконец, в 1952 г. среди новых ядер, извлеченных из продуктов термоядерного взрыва «Майк», был обнаружен удивительный изотоп калифорний-254. Удивительный потому, что главным видом его распада «оказалось спонтанное деление. Прежде подобные ядра в таблицах изотопов не числились.



Удивительной оказалась и энергетика этого изотопа. Удельную мощность калифорниевого источника трудно назвать иначе, как гигантской, – 10 000 кВт/кг! Вполне подходящим для объяснения затухания сверхновой звезды оказался и 66-дневный период полураспада калифорния-254.
Возникла любопытная гипотеза: рождение сверхновой звезды объяснялось космическим термоядерным взрывом, в котором из стабильных ядер, наглотавшихся нейтронов, образовывалось значительное количество калифорния-254; длительное послесвечение звездной материи объяснялось энергией распадающегося калифорния.
С элементом №98 ученые познакомились за два года до открытия «звездного» изотопа. В 1950 г. известные американские ученые Стэнли Томпсон, Генри Стрит, Альберт Гиорсо и Гленн Сиборг поместили в поток быстрых гелиевых ядер микрограммовую мишень из кюрия-242, пожалуй, самого неподходящего для этой цели изотопа элемента №96. У кюрия-242 очень высокая удельная активность, и работать даже с микрограммовыми количествами подобного вещества весьма неприятно. Да и выход 98-го элемента в реакции кюрий + альфа-частица ожидался мизерным. Слишком мало нейтронов в ядре 242Cm, а это, как хорошо известно физикам-ядерщикам, всегда ведет к уменьшению к. п. д. реакции: при недостатке ядерных нейтронов шансы на образование новых элементов заметно уменьшаются. Но другого пути не было. В 1950 г. увеличить атомный номер облучаемого элемента больше чем на два еще не могли: самыми тяжелыми ядерными снарядами тогда были ядра гелия, альфа-частицы. Поэтому мишенью мог быть только кюрий, а других изотопов кюрия, кроме 242-го, еще не получили.
Новый элемент родился в ядерной реакции
24296Cm + 42He → 24598 + 10n.
Получили всего несколько тысяч атомов. Их нужно было отделить от кюрия-242, активность которого достигала 1011 распадов в минуту; столько же альфа-частиц рождается в куске урана весом в несколько десятков килограммов.
По предварительным оценкам (основанным на систематике свойств изотопов трансурановых элементов) ожидали, что период полураспада нового изотопа будет около одного часа. Так что надо было спешить. Кюриевую мишень быстро растворили, раствор пустили в хроматографическую колонку с катионообменной смолой Дауэкс-50 и стали промывать смолу элюентом – альфа-оксиизобутиратом аммония.
Адсорбированные смолой атомы переходили в элюент и вместе с ним просачивались сквозь смолу. Капли элюента падали на платиновые пластинки, расположенные на краю круглого вращающегося столика. Ожидаемый порядок выхода актиноидов определили заранее, в опытах с лантаноидами. Элемент №98 – аналог диспрозия – вышел из колонки вовремя. Его исследовали: период полураспада 24598 оказался равным 44 минутам.
Новый элемент был назван калифорнием – в честь университета и штата, где были добыты его первые атомы. Авторы писали: «Известно, что название «диспрозий» происходит от греческого слова «труднодоступный». Назвав открытый элемент калифорнием, мы хотели отметить, что первооткрывателям элемента пришлось столь же трудно, как век назад пионерам Америки трудно было достигнуть Калифорнии».
Получить весовые количества калифорния в ядерных реакциях с заряженными частицами – задача практически невыполнимая: слишком мал выход этого элемента при слиянии двух атомных ядер. Так, ядра кюрия, бомбардируемые альфа-частицами, как правило, делятся ими на ядра-осколки – 98-й появляется только в исключительных случаях. Поэтому весовые количества калифорния сегодня получают, облучая тяжелые изотопы плутония и кюрия в нейтронных потоках мощных ядерных реакторов, построенных специально для производства трансуранов. Иначе, в обычном реакторе, накопление калифорния будет протекать слишком медленно. Потребуются десятки лет, чтобы плутоний или кюрий превратились в элемент №98.
На пути плутоний – калифорний в осколки превращаются 9999 ядер из 10000. В конечном итоге на грамм калифорния затрачиваются 10 кг плутония-239. И все же потери в реакторе в тысячи раз меньше потерь при синтезе калифорния в пучке ускоренных ядер. Изотоп 252Cf по существу замыкает цепочку плутоний – калифорний. Это ядро слабо взаимодействует с нейтронами, его очень трудно превратить в еще более тяжелые изотопы. Калифорний-252 становится как бы естественным «тупиком» в реакторной цепи превращений плутония. Поэтому в тупике и скапливаются в основном ядра изотопа 252Cf. А более легкие изотопы – 249Cf, 250Cf, 251Cf – получаются в гораздо меньших количествах, хотя и стоят в предыдущих звеньях цепи превращений.
Первые микрограммовые количества калифорния-249 были накоплены в 1958 г. на американском реакторе для испытания материалов. Тогда же синтезированы и первые чистые соединения калифорния – окись Cf2O3 и оксихлорид CfOCl.

Калифорний чрезвычайно летучий металл. Существует в двух полиморфных модификациях. Ниже 600 °C устойчива a-модификация с гексагональной решёткой (параметры а = 0,339 нм, с = 1,101 нм), выше 600 °C — b-модификация с кубической гранецентрированной решёткой. Температура плавления металла 900 °C, температура кипения 1227 °C.
По химическим свойствам калифорний подобен лантаноидам. Синтезированы галогениды калифорния — CfHal3, оксигалогениды — CfOHal. Для получения диоксида калифорния CfO2 оксид Cf2O3 окисляют при нагревании кислородом под давлением 10МПа. В растворах Cf4+ получают, действуя на соединения Cf3+ сильными окислителями. Синтезирован твёрдый дииодид калифорния CfI2. Из водных растворов Cf3+ восстанавливается до Cf2+ электрохимически.

Калифорниевая пуля

Известно, что даже незначительная прибавка к величине η сильно влияет на критическую массу делящегося материала, уменьшает ее. Поэтому после изучения ядерных свойств калифорния считалось, что можно изготовить калифорниевую минибомбу весом всего в несколько десятков граммов. В американских журналах печатались статьи с описанием храбрых снайперов, которые выстрелами из винтовок, заряженных калифорниевыми патронами, преграждают путь целым армиям. Но, судя по научным публикациям, дальше сенсации дело не пошло: пока атомную взрывчатку выгоднее делать из плутония. Выше приводился расчет, что на десяток граммов калифорния необходимо израсходовать сотню килограммов плутония. А сто килограммов плутония – это много...




Известные
изотопы калифорния:






Изотоп




Атомная масса




Период полураспада




Вид распада




Cf-242




242.06372




3.3 мин.




альфа в Cm-238




Cf-243




243.065




11 мин.




альфа в Cm-239




Cf-244




244.06599




20 мин.




альфа в Cm-240




Cf-245




245.06807




44 мин.




альфа в Cm-241




Cf-246




246.06884




36 час.




альфа в Cm-242; самопроизв. (0.2%)




Cf-247




247.0712




3.11 час.




захват электрона в Bk-247 (99.97%)




Cf-248




248.07218




334 дн.




альфа в Cm-244; самопроизв.
(0.013%)





Cf-249




249.07485




351 г.




альфа в Cm-245; самопроизв.
(5.2E-7%)





Cf-250




250.07640




13.1 г.




альфа в Cm-246; самопроизв.
(0.079%)





Cf-251




251.079580




898 г.




альфа в Cm-247




Cf-252




252.08162




2.64 г.




альфа в Cm-248; самопроизв.
(3.08%)





Cf-253




253.08513




17.8 дн.




альфа в Cm-249; бета в Es-253




Cf-254




254.08732




60.5 дн.




самопроизв. (> 99%); альфа в
Cm-250 (< 1%)





Cf-255




255.0910




1.4 час.




бета в Es-255




Комментариев нет:

Отправить комментарий