рекомендации

четверг, 4 декабря 2014 г.

ТОРИЙ


Торий (Thorium), Th, - химический элемент III группы периодической системы, первый член группы актинидов; порядковый номер 90, атомный вес 232.038. В 1828 году, анализируя редкий минерал, найденный в Швеции, Йенс Якоб Берцелиус обнаружил в нем окись нового элемента. Этот элемент был назван торием в честь всемогущего скандинавского божества Тора (Тор - коллега Марса и Юпитера: – бог войны, грома и молнии.). Получить чистый металлический торий Берцелиусу не удалось. Чистый препарат тория был получен лишь в 1882 другим шведским химиком - первооткрывателем скандия - Ларсом Нильсоном. Радиоактивность тория открыта в 1898 году независимо друг от друга одновременно Марией Склодовской-Кюри и Гербертом Шмидтом.

Изотопы тория

Природные радиоактивные изотопы: 227Th, 228Th (1,37-100 %), 230Th, 231Th, 232Th (100%), 234Th. Известно девять искусственных радиоактивных изотопов тория.

Торий – природный радиоактивный элемент, родоначальник семейства тория. Известны 12 изотопов, однако природный торий практически состоит из одного изотопа 232Th (T1/2=1,4*1010 лет, α-распад). Его удельная радиоактивность 0.109 микрокюри/г. Распад тория приводит к образованию радиоактивного газа – торона (радон-220), который представляет опасность при вдыхании. С 232Th в равновесии находится 238Th (RdTh, Т1/2=1,91 лет). Четыре изотопа тория образуются в процессах распада 238U (230Th (ионий, Io, T=75.380 лет) и 234Th (уранХ1, UX1, T=24.1 дня)) и 235U (227Th (радиоактиний, RdAc, Т=18.72 дн. и 231Th (уран Y, UY, T=1.063 дня). Для практических применений, единственными изотопами, присутствующими в заметных количествах в очищенном тории - 228Th и 230Th, т.к. остальные имеют очень короткий период полураспада, и 228Th распадается после нескольких лет хранения. Искусственные изотопы тория большей частью короткоживущие; из них большой период полураспада имеет только 229Th (Т1/2=7340 лет), принадлежащий к искусственному радиоактивному семейству нептуния. Сечение захвата тепловых нейтронов изотопом 232Th 7,31 барн/атом.
Радиоактивные изотопы тория получают из монацитовых руд, используя чаще всего сернокислотный метод разложения.

Торий в природе

Торий, как радиоактивный элемент, является одним из источников радиоактивного фона Земли. Содержание тория в минерале торианите составляет от 45 до 88 %, в минерале торите — до 62%. Содержание тория в речной воде 8,1•10-4 Бк/л. Это на порядок ниже, чем урана, и на два порядка ниже, чем 40К (3,7-10-2 Бк/л).
Тория в природе значительно больше урана. В ничтожных количествах он встречается даже в гранитах. Содержание тория в земной коре 8*10-4 вес.%, примерно столько же, сколько свинца. В природных соединениях торий связан с ураном, редкоземельными элементами и цирконием, относится к типично литосферным элементам и концентрируется преимущественно в верхних слоях литосферы. Торий обнаружен более чем в 100 минералах, представляющих собой кислородные соединения, преимущественно оксиды и значительно реже – фосфаты и карбонаты. Более 40 минералов являются соединениями тория или же торий входит в них в качестве одного из главных компонентов. Основными промышленными минералами тория являются монацит (Ce, La, Th…)PO4, торит ThSiO4 и торианит (Th,U)O2.
Торит очень богат торием (45 до 93% ThO2), но редок, так же как и другой богатый ториевый минерал - торианит (Th, U)O2, содержащий от 45 до 93% ThO2. Важный минерал тория - монацитовый песок. В общем виде его формулу записывают в виде (Ce, Th)PO4, но он содержит кроме церия еще лантан, празеодим, неодим и другие редкие земли, а также - уран. Тория в монаците - от 2.5 до 12%. Богатые монацитовые россыпи есть в Бразилии, Индии, США, Австралии, Малайзии. Известны и жильные месторождения этого минерала - на юге Африки.
Монацит – минерал прочный, устойчивый против выветривания. При выветривании горных пород, особенно интенсивном в тропической и субтропической зонах, когда почти все минералы разрушаются и растворяются, монацит не изменяется. Ручьи и реки уносят его к морю вместе с другими устойчивыми минералами – цирконом, кварцем, минералами титана. Волны морей и океанов довершают работу по разрушению и сортировке минералов, накопившихся в прибрежной зоне. Под их влиянием происходит концентрирование тяжелых минералов, отчего пески пляжей приобретают темную окраску. Так на пляжах формируются монацитовые россыпи – «чёрные пески».

Физические и химические свойства

Торий – серебристо-белый блестящий металл, пластичный, легко подвергающийся механической обработке (легко деформируется на холоду), стойкий к окислению в чистом виде, но обычно медленно тускнеющий до темного цвета с течением времени. Образцы металлического тория с содержанием оксида тория 1,5—2% очень устойчивы к окислению и долгое время не тускнеют. До 1400°С устойчива кубическая гранецентрированная решетка, а=0,5086 нм, выше этой температуры кубическая объемно- центрированная, а=0,41 нм. Атомный диаметр тория в α-форме 0,359 нм, в β-форме 0,411 нм.
Основные свойства тория: плотность: 11.724 г/см3, температура плавления: 1750°C; температура кипения: 4200°C. Теплота плавления 4,6 ккал/моль, теплота испарения 130-150 ккал/моль, атомная теплоёмкость 6,53 кал/г-ат.град , теплопроводность 0,090 (20°) кал/см.сек.град, удельное электросопротивление 15*10-6 ом.см. При температуре 1,3-1,4 К торий становится сверхпроводником.
Торий медленно разрушается холодной водой, но в горячей воде скорость коррозии тория и сплавов на его основе в сотни раз выше, чем у алюминия. Порошок металлического тория пирофорен (поэтому его хранят под слоем керосина). При нагреве в воздухе он загорается и горит ярким белым светом. Чистый торий - мягкий, очень гибкий и ковкий, с ним можно работать непосредственно (холодный прокат, горячая штамповка и т.п.), однако его протяжка затруднительна из-за низкого предела прочности на разрыв. Содержание оксида сильно затрагивает механические свойства тория; даже чистые образцы тория обычно содержат несколько десятых процента оксида тория. При сильном нагреве он взаимодействует с водородом, галогенами, серой, азотом, кремнием, алюминием и рядом других элементов. Интересным свойством металлического тория является растворимость в нем водорода, возрастающая с понижением температуры. Он плохо растворяется в основных кислотах, за исключением соляной. Он малорастворим в серной и азотной кислотах. Металлический торий растворим в концентрированных растворах НС1 (6—12 моль/л) и HNO3 (8—16 моль/л) в присутствии иона фтора.
По химическим свойствам торий, с одной стороны, является аналогом церия, а с другой — циркония и гафния. Торий способен проявлять степени окисления +4, +3 и +2, из которых наиболее устойчивой является +4.
Торий по внешнему виду и температуре плавления напоминает платину, по удельному весу и твердости - свинец. В химическом отношении у тория мало сходства с актинием (хотя его и относят к актинидам), но много сходства с церием и другими элементам второй подгруппы IV группы. Лишь по структуре электронной оболочки атома - он равноправный член семейства актинидов.
Хотя торий относится к семейству актинидов, по некоторым свойствам он близок также ко второй подгруппе IV группы периодической системы – Ti, Zr, Hf. Сходство тория с редкоземельными элементами связано с близостью величин их ионных радиусов, которые для всех этих элементов находятся в пределах 0.99 - 1.22 А. В соединениях ионного или ковалентного типа торий почти исключительно четырехвалентен.
ТhO2 – основной оксид тория (структура флюорита) получается при сжигании тория на воздухе. Прокаленная ThO2 почти не растворяется в растворах кислот и щелочей; процесс растворения в азотной кислоте резко ускоряется при добавлении незначительных количеств ионов фтора. Окись тория является довольно тугоплавкой субстанцией - ее температура плавления 3300°С - самая высокая из всех оксидов и выше большинства других материалов, за несколькими исключениями. Это свойство когда-то рассматривалось для основного коммерческого использования тория как огнеупорной керамики - в основном в керамических деталях, огнеупорных литьевых формах и тиглях. Но, выдерживая высочайшие температуры, окись тория частично растворяется во многих жидких металлах и загрязняет их. Самое широкое применение окиси было в производстве газокалильных сеток для газовых фонарей.

Производство тория

Торий получают переработкой монацитового песка, который перемешан с кварцевым, цирконовым, рутиловым... Поэтому первая стадия производства тория – получение чистого монацитового концентрата. Для отделения монацита используют разные способы и приспособления. Первоначально грубо отделяют его на дезинтеграторах и концентрационных столах, используя разницу в плотности минералов и их смачиваемости различными жидкостями. Тонкого разделения достигают путем электромагнитной и электростатической сепарации. Полученный таким образом концентрат содержит 95...98% монацита.
Отделение тория чрезвычайно затруднено, поскольку монацит содержит элементы, по свойствам близкие к торию, – редкоземельные металлы, уран... Из многочисленных методов вскрытия монацитовых концентратов промышленное значение имеют лишь два:
1) Обработка крепкой серной кислотой при 200°С
2) Обработка тонокоизмельчённого концентрата 45%-ным раствором NaOH при 140°С.
Отделение урана и тория от редких земель происходит на следующей стадии. Сейчас для этого в основном используют процессы экстракции. Чаще всего из водных растворов торий и уран экстрагируют несмешивающимся с водой трибутилфосфатом. Разделение урана и тория происходит на стадии избирательной реэкстракции. При определенных условиях торий из органического растворителя перетягивается в водный раствор азотной кислоты, а уран остается в органической фазе. После того как торий отделен, нужно превратить его соединения в металл. Распространены два способа: восстановление двуокиси ThO2 или тетрафторида ThF4 металлическим кальцием и электролиз расплавленных галогенидов тория. Обычно продуктом этих превращений бывает ториевый порошок, который затем спекают в вакууме при 1100...1350°C.
Многочисленные сложности ториевого производства усугубляются необходимостью надежной радиационной защиты.

Применение тория

Сейчас торий используется для легирования некоторых сплавов. Торий заметно повышает прочность и жаростойкость сплавов на железной, никелевой, кобальтовой, медной, магниевой или алюминиевой основе. Большое значение имеют многокомпонентные сплавы на магниевой основе, содержащие торий, а также Zn, Zr, и Mn; сплавы отличаются небольшим удельным весом, хорошей прочностью, высокой стойкостью при повышенных температурах. Эти сплавы применяют для деталей реактивных двигателей, управляемых снарядов, электронной и радарной аппаратуры.
В XIX веке двуокись ThO2 применяли в производстве газокалильных сеток - газовое освещение было распространено больше, чем электрическое. Изобретенные австрийским химиком Карлом Ауэром фон Вельсбахом колпачки из окислов церия и тория увеличивали яркость и преобразовывали спектр пламени газовых рожков – свет их становился ярче, ровнее. Из двуокиси тория – соединения весьма тугоплавкого – пробовали делать и тигли для выплавки редких металлов. Но, выдерживая высочайшие температуры, это вещество частично растворялось во многих жидких металлах и загрязняло их. Потому тигли из ThO2 широкого распространения не получили.
Торий применяется как катализатор - в процессах органического синтеза, крекинга нефти, при синтезе жидкого топлива из каменного угля, гидрирования углеводородов, а так же в реакциях окисления NH3 до HNO3 и SO2 до SO3.
В связи со сравнительно малой работой выхода электрона и высокой электронной эмиссией торий применяют как электродный материал для некоторых типов электронных ламп. Торий используется так же как геттер в электронной промышленности.
Важнейшей областью применения тория является ядерная техника. В ряде стран построены атомные реакторы в которых в качестве топлива используется металлический торий, карбид тория, Th3Bi5 и др., часто в смеси с ураном и его соединениями.
Как уже упоминалось, торий-232 не способен делиться тепловыми нейтронами. Тем не менее торий является источником вторичного ядерного горючего (233U), получаемого по ядерной реакции на тепловых нейтронах.
U - отличное ядерное горючее, поддерживающее цепное деление и имеющее некоторое преимущество перед 235U: при делении его ядра выделяется больше нейтронов. Каждый нейтрон, поглощенный ядром 239Pu или 235U, дает 2.03 - 2.08 новых нейтронов, а 233U - намного больше - 2.37. С точки зрения ядерной индустрии, преимущество тория перед ураном заключается в высокой температуре плавления, в отсутствии фазовых превращений до 1400°С, в высокой механической прочности и радиационной устойчивости металлического тория и ряда его соединений (оксида, карбида, фторида). 233U отличается высоким значением коэффициента воспроизводства тепловых нейтронов, обеспечивающим высокую степень их использования в ядерных реакторах. К недостаткам тория относится необходимость добавления к нему делящихся материалов для осуществления ядерной реакции.
Применение тория в качестве ядерного горючего затруднено прежде всего тем, что в побочных реакциях образуются изотопы с высокой активностью. Главный из таких загрязнителей 232U - α- и γ-излучатель с периодом полураспада 73.6 года. Его использованию препятствует и то обстоятельство, что торий дороже урана, поскольку уран легче выделить из смеси с другими элементами. Некоторые урановые минералы (уранит, урановая смолка) - это простые оксиды урана. У тория таких простых минералов (имеющих промышленное значение) нет. А попутное выделение из редкоземельных минералов осложнено сходством тория с элементами семейства лантана.
Главная проблема получения делящегося материала из тория состоит в том, что он изначально не присутствует в реальном реакторном топливе, в отличие от 238U. Для использования ториевого воспроизводства высокообогащенный делящийся материал (235U, 233U, 239Pu) должен использоваться в качестве топлива реактора с включениями тория только для возможности воспроизводства (т.е. не происходит или происходит незначительное выделение энергии, хотя сгорание 233U, полученного на месте, может внести вклад в выделение энергии). С другой стороны, тепловые бридерные реакторы (на медленных нейтронах) способны использовать 233U/торий цикл воспроизводства, особенно если в качестве замедлителя использовать тяжелую воду. Тем не менее о торцевой ядерной энергетике следует думать всерьез. Запасы этого элемента только в редкоземельных рудах втрое превышают все мировые запасы урана. Это неминуемо приведет к увеличению роли ториевого ядерного горючего в энергетике будущего.

Физиологические свойства тория

Как ни странно, поступление тория в желудочно-кишечный тракт (тяжелый металл, к тому же радиоактивный!) не вызывает отравления. Объясняется это тем, что в желудке – кислая среда, и в этих условиях соединения тория гидролизуются. Конечный продукт – нерастворимая гидроокись тория, которая выводится из организма. Острое отравление способна вызвать лишь нереальная доза в 100 г тория...
Чрезвычайно опасно попадание тория в кровь. В этом, к сожалению, люди убедились не сразу. В 20...30 годах при заболеваниях печени и селезенки для диагностических целей применяли препарат «торотраст», включавший окись тория. Врачи, уверенные в нетоксичности ториевых препаратов, прописывали торотраст тысячам пациентов. И тут начались неприятности. Несколько человек погибли от заболевания кроветворной системы, у некоторых возникли специфические опухоли. Оказалось, что, попадая в кровь в результате инъекций, торий осаждает протеин и тем способствует закупорке капилляров. Отлагаясь в костях близ кроветворных тканей, природный торий-232 становится источником гораздо более опасных для организма изотопов – мезотория, тория-228, торона. Естественно, что торотраст был спешно изъят из употребления.
При работе с торием и его соединениями возможно поступление в организм как самого тория, так и его дочерних продуктов. Наиболее вероятным путем проникновения аэрозольных частиц или газообразного продукта являются органы дыхания. Торий может поступать в организм также через ЖКТ и кожу, особенно поврежденную, имеющую мелкие ссадины, царапины. Соли тория, попадая в организм, подвергаются гидролизу с образованием труднорастворимого выпадающего в осадок гидроксида. Торий может существовать в ионной форме в исключительно низких концентрациях, в большинстве случаев он находится в виде агрегатов молекул (коллоид). Торий образует прочные комплексы с белками, аминокислотами и органическими кислотами. Очень мелкие частицы тория могут адсорбироваться на поверхности клеток мягких тканей.
При поступлении тория через органы дыхания в выдыхаемом воздухе определяется торон. Поведение его в организме существенно отличается от других продуктов распада. При вдыхании он смешивается с легочным воздухом, диффундирует из легких в ток крови со скоростью около 20 % в мин и разносится по организму. Тб торона из крови составляет 4,5 мин
При внутривенном введении торотраста непосредственная реакция организма заключается в быстро проходящей лихорадке, тошноте, кратковременной анемии, лейкопении или лейкоцитозе. Описаны деструктивные изменения кожи после терапевтического применения Т. Так, длительное использование обычных терапевтических доз Т. вызывает необратимые дегенеративно-атрофические изменения кожи с нарушением эпидермиса, подкожной ткани и кожных капилляров. В тяжелых случаях наблюдаются пузыри на коже с последующей некротизацией и образованием желтых твердых корочек. При лечении кожных поражений у больных через 4 года после терапевтического применения 324Th наступает атрофия кожи.
Определение содержания тория в организме проводят измерением α-, γ-излучения в выдыхаемом воздухе (тороне), а также в крови, выделениях, промывных водах, рвотных массах; в воздухе — контролируют по уровню γ-излучения.
Меры профилактики: предупреждение поступления в воздух аэрозолей и газообразных продуктов распада тория, механизация и герметизация всех производственных процессов. При работе с изотопами тория необходимо соблюдать санитарные правила и нормы радиационной безопасности с применением специальных мер защиты в соответствии с классом работ. Неотложная помощь. Дезактивация рук и лица водой с мылом или 2—3 % раствором порошка «Новость». Промывание полости рта и носоглотки. Внутрь противоядие от тяжелых металлов (аntidotum metallorum 50,0 г) или активированный уголь. Рвотные средства (апоморфин 1 % — 0,5 мл подкожно) или промывание желудка водой. Солевые слабительные, очистительные клизмы. Мочегонные (гипотиазид 0,2 г, фонурит 0,25). При ингаляционном поражении (пыль, аэрозоль) —
внутрь отхаркивающие (термопсис с содой, терпингидрат). Внутривенно 10 мл 5 % раствора пентацина. 

Источник:

Комментариев нет:

Отправить комментарий